Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Nephron ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657578

RESUMO

Cystinuria (CYS) is the most common monogenic kidney stone disease. Starting from an unusual case of CYS associated to Primary Sclerosing Cholangitis, inflammatory bowel disease (IBD) and autoimmune hepatitis in a young male, we carefully review the literature and propose here a working hypothesis regarding the potential risk of cystinuric patients to develop conditions due to immune system dysregulation. To corroborate this hypothesis, we retrospectively evaluate the frequency of dysimmunity in a cohort of cystinuric patients compared to healthy and disease controls. Further studies are needed to define the relationship between proximal tubular transport defect of CYS and dysregulated immunity.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38634137

RESUMO

Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD) and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives and society. However, the underlying pathomechanisms are poorly understood and current therapies mostly aim at supporting patients in their daily life. This illustrates the urgent need to elucidate the pathogenesis, and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modelling of cognitive disorders in CKD. We discuss the use of mice, rats and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving therapy of people with CKD and MCI.

3.
Nephrol Dial Transplant ; 39(2): 297-304, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37463050

RESUMO

BACKGROUND: The use of cyclosporin A (CsA) is hampered by the development of nephrotoxicity including hypertension, which is partially dependent on renal sodium retention. To address this issue, we have investigated in vivo sodium reabsorption in different nephron segments of CsA-treated rats through micropuncture study coupled to expression analyses of sodium transporters. To translate the findings in rats to human, kidney-transplanted patients having CsA treatment were enrolled in the study. METHODS: Adult male Sprague-Dawley rats were treated with CsA (15 mg/kg/day) for 21 days, followed by micropuncture study and expression analyses of sodium transporters. CsA-treated kidney-transplanted patients with resistant hypertension were challenged with 50 mg furosemide. RESULTS: CsA-treated rats developed hypertension associated with reduced glomerular filtration rate. In vivo microperfusion study demonstrated a significant decrease in rate of absolute fluid reabsorption in the proximal tubule but enhanced sodium reabsorption in the thick ascending limb of Henle's loop (TAL). Expression analyses of sodium transporters at the same nephron segments further revealed a reduction in Na+-H+ exchanger isoform 3 (NHE3) in the renal cortex, while TAL-specific, furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and NHE3 were significantly upregulated in the inner stripe of outer medulla. CsA-treated patients had a larger excretion of urinary NKCC2 protein at basal condition, and higher diuretic response to furosemide, showing increased FeNa+, FeCl- and FeCa2+ compared with both healthy controls and FK506-treated transplanted patients. CONCLUSION: Altogether, these findings suggest that up-regulation of NKCC2 along the TAL facilitates sodium retention and contributes to the development of CsA-induced hypertension.


Assuntos
Ciclosporina , Hipertensão , Adulto , Humanos , Masculino , Ratos , Animais , Ciclosporina/efeitos adversos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Regulação para Cima , Furosemida , Ratos Sprague-Dawley , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
4.
Sci Transl Med ; 15(720): eabn4214, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37910600

RESUMO

Glycogen storage disease XI, also known as Fanconi-Bickel syndrome (FBS), is a rare autosomal recessive disorder caused by mutations in the SLC2A2 gene that encodes the glucose-facilitated transporter type 2 (GLUT2). Patients develop a life-threatening renal proximal tubule dysfunction for which no treatment is available apart from electrolyte replacement. To investigate the renal pathogenesis of FBS, SLC2A2 expression was ablated in mouse kidney and HK-2 proximal tubule cells. GLUT2Pax8Cre+ mice developed time-dependent glycogen accumulation in proximal tubule cells and recapitulated the renal Fanconi phenotype seen in patients. In vitro suppression of GLUT2 impaired lysosomal autophagy as shown by transcriptomic and biochemical analysis. However, this effect was reversed by exposure to a low glucose concentration, suggesting that GLUT2 facilitates the homeostasis of key cellular pathways in proximal tubule cells by preventing glucose toxicity. To investigate whether targeting proximal tubule glucose influx can limit glycogen accumulation and correct symptoms in vivo, we treated mice with the selective SGLT2 inhibitor dapagliflozin. Dapagliflozin reduced glycogen accumulation and improved metabolic acidosis and phosphaturia in the animals by normalizing the expression of Napi2a and NHE3 transporters. In addition, in a patient with FBS, dapagliflozin was safe, improved serum potassium and phosphate concentrations, and reduced glycogen content in urinary shed cells. Overall, this study provides proof of concept for dapagliflozin as a potentially suitable therapy for FBS.


Assuntos
Síndrome de Fanconi , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Camundongos , Animais , Síndrome de Fanconi/genética , Síndrome de Fanconi/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Glucose , Rim/metabolismo , Glicogênio
5.
G Ital Nefrol ; 40(Suppl 81)2023 10 03.
Artigo em Italiano | MEDLINE | ID: mdl-38007830

RESUMO

Onconephrology is a rising and rapidly expanding field of medicine in which nephrology and oncology meet each other. Besides multidisciplinary meetings, oncologists and nephrologists often discuss on timing of the treatment, dosage, and side effects management. Cancer patients often encounter different electrolyte disorders. They are mostly secondary to the tumor itself or consequences of its treatment. In the last years, the great efforts to find new therapies like targeted, immune, and cell-based led us to many new side effects. Hyponatremia, hypokalemia, hyperkalemia, hypercalcemia, and hypomagnesemia are among the most common electrolyte disorders. Data have shown a worse prognosis in patients with electrolytic imbalances. Additionally, they cause a delay in chemotherapy or even an interruption. It is important to diagnose promptly these complications and treat them. In this review, we provide a special focus on hyponatremia and its treatment as the most common electrolytes disorder in cancer patients, but also on newly described cases of hypo- and hyperkalemia and metabolic acidosis.


Assuntos
Hiperpotassemia , Hipernatremia , Hipopotassemia , Hiponatremia , Neoplasias , Desequilíbrio Hidroeletrolítico , Humanos , Hiponatremia/diagnóstico , Hiponatremia/etiologia , Hiponatremia/terapia , Hiperpotassemia/terapia , Hiperpotassemia/complicações , Hipernatremia/complicações , Desequilíbrio Hidroeletrolítico/etiologia , Neoplasias/complicações , Hipopotassemia/etiologia , Eletrólitos
6.
Nat Commun ; 14(1): 2775, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188688

RESUMO

Heterozygous mutations in the gene encoding RagD GTPase were shown to cause a novel autosomal dominant condition characterized by kidney tubulopathy and cardiomyopathy. We previously demonstrated that RagD, and its paralogue RagC, mediate a non-canonical mTORC1 signaling pathway that inhibits the activity of TFEB and TFE3, transcription factors of the MiT/TFE family and master regulators of lysosomal biogenesis and autophagy. Here we show that RagD mutations causing kidney tubulopathy and cardiomyopathy are "auto- activating", even in the absence of Folliculin, the GAP responsible for RagC/D activation, and cause constitutive phosphorylation of TFEB and TFE3 by mTORC1, without affecting the phosphorylation of "canonical" mTORC1 substrates, such as S6K. By using HeLa and HK-2 cell lines, human induced pluripotent stem cell-derived cardiomyocytes and patient-derived primary fibroblasts, we show that RRAGD auto-activating mutations lead to inhibition of TFEB and TFE3 nuclear translocation and transcriptional activity, which impairs the response to lysosomal and mitochondrial injury. These data suggest that inhibition of MiT/TFE factors plays a key role in kidney tubulopathy and cardiomyopathy syndrome.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células-Tronco Pluripotentes Induzidas , Humanos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células HeLa , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mutação
7.
Genes (Basel) ; 14(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36981034

RESUMO

Mutations in COL4A3-A5 cause a spectrum of glomerular disorders, including thin basement membrane nephropathy (TBMN) and Alport syndrome (AS). The wide application of next-generation sequencing (NGS) in the last few years has revealed that mutations in these genes are not limited to these clinical entities. In this study, 176 individuals with a clinical diagnosis of inherited kidney disorders underwent an NGS-based analysis to address the underlying cause; those who changed or perfected the clinical diagnosis after molecular analysis were selected. In 5 out of 83 individuals reaching a molecular diagnosis, the genetic result was unexpected: three individuals showed mutations in collagen type IV genes. These patients showed the following clinical pictures: (1) familial focal segmental glomerulosclerosis; (2) end-stage renal disease (ESRD) diagnosed incidentally in a 49-year-old man, with diffuse cortical calcifications on renal imaging; and (3) dysmorphic and asymmetric kidneys with multiple cysts and signs of tubule-interstitial defects. Genetic analysis revealed rare heterozygote/compound heterozygote COL4A4-A5 variants. Our study highlights the key role of NGS in the diagnosis of inherited renal disorders and shows the phenotype variability in patients carrying mutations in collagen type IV genes.


Assuntos
Colágeno Tipo IV , Nefrite Hereditária , Humanos , Colágeno Tipo IV/genética , Rim , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Variação Biológica da População , Sequenciamento de Nucleotídeos em Larga Escala
8.
Pharmaceutics ; 15(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36839657

RESUMO

Plant-derived nanovesicles (PDNVs) have become attractive alternatives to mammalian cell-derived extracellular vesicles (EVs) both as therapeutic approaches and drug-delivery vehicles. In this study, we isolated tomato fruit-derived NVs and separated them by the iodixanol density gradient ultracentrifugation (DGUC) into twelve fractions. Three visible bands were observed at densities 1.064 ± 0.007 g/mL, 1.103 ± 0.006 g/mL and 1.122 ± 0.012 g/mL. Crude tomato PDNVs and DGUC fractions were characterized by particle size-distribution, concentration, lipid and protein contents as well as protein composition using mass spectrometry-based proteomics. Cytotoxicity and anti-inflammatory activity of the DGUC fractions associated to these bands were assessed in the lipopolysaccharide (LPS)-stimulated human monocytic THP-1 cell culture. The middle and the low-density visible DGUC fractions of tomato PDNVs showed a significant reduction in LPS-induced inflammatory IL-1ß cytokine mRNA production. Functional analysis of proteins identified in these fractions reveals the presence of 14-3-3 proteins, endoplasmic reticulum luminal binding proteins and GTP binding proteins associated to gene ontology (GO) term GO:0050794 and the regulation of several cellular processes including inflammation. The most abundant middle-density DGUC fraction was loaded with curcumin using direct loading, sonication and extrusion methods and anti-inflammatory activity was compared. The highest entrapment efficiency and drug loading capacity was obtained by direct loading. Curcumin loaded by sonication increased the basal anti-inflammatory activity of tomato PDNVs.

9.
Nephrol Dial Transplant ; 38(3): 586-598, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35921220

RESUMO

BACKGROUND: The kidney is the main organ in the pathophysiology of essential hypertension. Although most bicarbonate reabsorption occurs in the proximal tubule, the medullary thick ascending limb (mTAL) of the nephron also maintains acid-base balance by contributing to 25% of bicarbonate reabsorption. A crucial element in this regulation is the sodium-hydrogen exchanger 1 (NHE1), a ubiquitous membrane protein controlling intracellular pH, where proton extrusion is driven by the inward sodium flux. MicroRNA (miRNA) expression of hypertensive patients significantly differs from that of normotensive subjects. The aim of this study was to determine the functional role of miRNA alterations at the mTAL level. METHODS: By miRNA microarray analysis, we identified miRNA expression profiles in isolated mTALs from high sodium intake-induced hypertensive rats (HSD) versus their normotensive counterparts (NSD). In vitro validation was carried out in rat mTAL cells. RESULTS: Five miRNAs involved in the onset of salt-sensitive hypertension were identified, including miR-23a, which was bioinformatically predicted to target NHE1 mRNA. Data demonstrated that miRNA-23a is downregulated in the mTAL of HSD rats while NHE1 is upregulated. Consistently, transfection of an miRNA-23a mimic in an mTAL cell line, using a viral vector, resulted in NHE1 downregulation. CONCLUSION: NHE1, a protein involved in sodium reabsorption at the mTAL level and blood pressure regulation, is upregulated in our model. This was due to a downregulation of miRNA-23a. Expression levels of this miRNA are influenced by high sodium intake in the mTALs of rats. The downregulation of miRNA-23a in humans affected by essential hypertension corroborate our data and point to the potential role of miRNA-23a in the regulation of mTAL function following high salt intake.


Assuntos
Hipertensão , MicroRNAs , Animais , Humanos , Ratos , Bicarbonatos , Hipertensão Essencial/metabolismo , Hipertensão/metabolismo , Medula Renal , MicroRNAs/metabolismo , Sódio/metabolismo , Cloreto de Sódio na Dieta , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo
10.
J Nephrol ; 36(4): 987-997, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36342644

RESUMO

BACKGROUND: Age- and height-adjusted total kidney volume is currently considered the best prognosticator in patients with autosomal dominant polycystic kidney disease. We tested the ratio of urinary epidermal growth factor and monocyte chemotactic peptide 1 for the prediction of the Mayo Clinic Imaging Classes. METHODS: Urinary epidermal growth factor and monocyte chemotactic peptide 1 levels were measured in two independent cohorts (discovery, n = 74 and validation set, n = 177) and healthy controls (n = 59) by immunological assay. Magnetic resonance imaging parameters were used for total kidney volume calculation and the Mayo Clinic Imaging Classification defined slow (1A-1B) and fast progressors (1C-1E). Microarray and quantitative gene expression analysis were used to test epidermal growth factor and monocyte chemotactic peptide 1 gene expression. RESULTS: Baseline ratio of urinary epidermal growth factor and monocyte chemotactic peptide 1 correlated with total kidney volume adjusted for height (r = - 0.6, p < 0.001), estimated glomerular filtration rate (r = 0.69 p < 0.001), discriminated between Mayo Clinic Imaging Classes (p < 0.001), and predicted the variation of estimated glomerular filtration rate at 10 years (r = - 0.51, p < 0.001). Conditional Inference Trees identified cut-off levels of the ratio of urinary epidermal growth factor and monocyte chemotactic peptide 1 for slow and fast progressors at > 132 (100% slow) and < 25.76 (89% and 86% fast, according to age), with 94% sensitivity and 66% specificity (p = 6.51E-16). Further, the ratio of urinary epidermal growth factor and monocyte chemotactic peptide 1 at baseline showed a positive correlation (p = 0.006, r = 0.36) with renal outcome (delta-estimated glomerular filtration rate per year, over a mean follow-up of 4.2 ± 1.2 years). Changes in the urinary epidermal growth factor and monocyte chemotactic peptide 1 were mirrored by gene expression levels in both human kidney cysts (epidermal growth factor: - 5.6-fold, fdr = 0.001; monocyte chemotactic peptide 1: 3.1-fold, fdr = 0.03) and Pkd1 knock-out mouse kidney (Egf: - 14.8-fold, fdr = 2.37E-20, Mcp1: 2.8-fold, fdr = 6.82E-15). CONCLUSION: The ratio of urinary epidermal growth factor and monocyte chemotactic peptide 1 is a non-invasive pathophysiological biomarker that can be used for clinical risk stratification in autosomal dominant polycystic kidney disease.


Assuntos
Rim Policístico Autossômico Dominante , Animais , Humanos , Camundongos , Progressão da Doença , Fator de Crescimento Epidérmico/genética , Rim , Monócitos/patologia , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Rim Policístico Autossômico Dominante/genética
11.
Curr Opin Nephrol Hypertens ; 31(5): 502-507, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894286

RESUMO

PURPOSE OF REVIEW: The current review aims to present the most recent achievements on the role of microRNAs (miRNAs) on the kidney function to stimulate research in the field and to expand new emerging concepts. RECENT FINDINGS: The focus is on the role of miRNAs in intercellular communication along the segments of the nephron and on the epi-miRNAs, namely the possibility of some miRNAs to modulate the epigenetic machinery and so gene expression. Indeed, recent evidence showed that miRNAs included in exosomes and released by proximal tubule cells can modulate ENaC activity on cells of collecting duct. These data, although, from in-vitro models open to a novel role for miRNAs to participate in paracrine signaling pathways. In addition, the role of miRNAs as epigenetic modulators is expanding not only in the cancer field, but also in the other kidney diseases. Recent evidence identified three miRNAs able to modulate the AQP2 promoter metilation and showing an additional level of regulation for the AQP2. SUMMARY: These evidence can inspire novel area of research both for renal physiology and drug discovery. The diseases involving the collecting duct are still missing disease modifying agents and the expanding miRNAs field could represent an opportunity.


Assuntos
Nefropatias , Túbulos Renais Coletores , MicroRNAs , Aquaporina 2/genética , Aquaporina 2/metabolismo , Humanos , Nefropatias/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais Coletores/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Néfrons/metabolismo
12.
J Am Soc Nephrol ; 33(10): 1864-1875, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35820785

RESUMO

BACKGROUND: Mutations in SLC37A4, which encodes the intracellular glucose transporter G6PT, cause the rare glycogen storage disease type 1b (GSD1b). A long-term consequence of GSD1b is kidney failure, which requires KRT. The main protein markers of proximal tubule function, including NaPi2A, NHE3, SGLT2, GLUT2, and AQP1, are downregulated as part of the disease phenotype. METHODS: We utilized an inducible mouse model of GSD1b, TM-G6PT-/-, to show that glycogen accumulation plays a crucial role in altering proximal tubule morphology and function. To limit glucose entry into proximal tubule cells and thus to prevent glycogen accumulation, we administered an SGLT2-inhibitor, dapagliflozin, to TM-G6PT-/- mice. RESULTS: In proximal tubule cells, G6PT suppression stimulates the upregulation and activity of hexokinase-I, which increases availability of the reabsorbed glucose for intracellular metabolism. Dapagliflozin prevented glycogen accumulation and improved kidney morphology by promoting a metabolic switch from glycogen synthesis toward lysis and by restoring expression levels of the main proximal tubule functional markers. CONCLUSION: We provide proof of concept for the efficacy of dapagliflozin in preserving kidney function in GSD1b mice. Our findings could represent the basis for repurposing this drug to treat patients with GSD1b.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Túbulos Renais Proximais , Camundongos , Animais , Transportador 2 de Glucose-Sódio/metabolismo , Túbulos Renais Proximais/metabolismo , Rim/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/metabolismo , Glicogênio/metabolismo
13.
Pflugers Arch ; 474(7): 733-741, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35397662

RESUMO

Renal micropuncture, which requires the direct access to the renal tubules, has for long time been the technique of choice to measure the single nephron glomerular filtration rate (SNGFR) in animal models. This approach is challenging by virtue of complex animal preparation and numerous technically difficult steps. The introduction of intravital multiphoton microscopy (MPM) offers another approach to the measure of the SNGFR by mean of the high laser-tissue penetration and the optical sectioning capacity. Previous MPM studies measuring SNGFR in vivo relied on fast full-frame acquisition during the filtration process obtainable with high performance resonant scanners. In this study, we describe an innovative linescan-based MPM method. The new method can discriminate SNGFR variations both in conditions of low and high glomerular filtration, and shows results comparable to conventional micropuncture both for rats and mice. Moreover, this novel approach has improved spatial and time resolution and is faster than previous methods, thus enabling the investigation of SNGFR from more tubules and improving options for data-analysis.


Assuntos
Microscopia , Néfrons , Animais , Taxa de Filtração Glomerular , Rim , Túbulos Renais , Camundongos , Punções , Ratos
14.
Mol Imaging ; 2022: 7908357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418808

RESUMO

Accumulation of uremic toxins may lead to the life-threatening condition "uremic syndrome" in patients with advanced chronic kidney disease (CKD) requiring renal replacement therapy. Clinical evaluation of proximal tubular secretion of organic cations (OC), of which some are uremic toxins, is desired, but difficult. The biomedical knowledge on OC secretion and cellular transport partly relies on studies using the fluorescent tracer 4-dimethylaminostyryl)-N-methylpyridinium (ASP+), which has been used in many studies of renal excretion mechanisms of organic ions and which could be a candidate as a PET tracer. This study is aimed at expanding the knowledge of the tracer characteristics of ASP+ by recording the distribution and intensity of ASP+ signals in vivo both by fluorescence and by positron emission tomography (PET) imaging and at investigating if the fluorescence signal of ASP+ is influenced by the presence of albumin. Two-photon in vivo microscopy of male Münich Wistar Frömter rats showed that a bolus injection of ASP+ conferred a fluorescence signal to the blood plasma lasting for about 30 minutes. In the renal proximal tubule, the bolus resulted in a complex pattern of fluorescence including a rapid and strong transient signal at the brush border, a very low signal in the luminal fluid, and a slow transient intracellular signal. PET imaging using 11C-labelled ASP+ showed accumulation in the liver, heart, and kidney. Fluorescence emission spectra recorded in vitro of ASP+ alone and in the presence of albumin using both 1-photon excitation and two-photon excitation showed that albumin strongly enhance the emission from ASP+ and induce a shift of the emission maximum from 600 to 570 nm. Conclusion. The renal pattern of fluorescence observed from ASP+ in vivo is likely affected by the local concentration of albumin, and quantification of ASP+ fluorescent signals in vivo cannot be directly translated to ASP+ concentrations.


Assuntos
Albuminas , Rim , Albuminas/metabolismo , Animais , Cátions/metabolismo , Fluorescência , Humanos , Rim/diagnóstico por imagem , Rim/metabolismo , Masculino , Compostos de Piridínio , Ratos , Ratos Wistar
15.
Biomedicines ; 10(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35203651

RESUMO

Vascular calcification (VC) is a pathological event caused by the unusual deposition of minerals in the vascular system, representing the leading cause of cardiovascular mortality in chronic kidney disease (CKD). In CKD, the deregulation of calcium and phosphate metabolism, along with the effect of several uremic toxins, act as key processes conveying altered mineralization. In this work, we tested the ability of lanthionine, a novel uremic toxin, to promote calcification in human endothelial cell cultures (Ea.hy926). We evaluated the effects of lanthionine, at a concentration similar to that actually detected in CKD patients, alone and under pro-calcifying culture conditions using calcium and phosphate. In pro-calcific culture conditions, lanthionine increased both the intracellular and extracellular calcium content and induced the expression of Bone Morphogenetic Protein 2 (BMP2) and RUNX Family Transcription Factor 2 (RUNX2). Lanthionine treatment, in pro-calcifying conditions, raised levels of tissue-nonspecific alkaline phosphatase (ALPL), whose expression also overlapped with Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1) gene expression, suggesting a possible role of the latter gene in the activation of ALPL. In addition, treatment with lanthionine alone or in combination with calcium and phosphate reduced Inorganic Pyrophosphate Transport Regulator (ANKH) gene expression, a protective factor toward the mineralizing process. Moreover, lanthionine in a pro-calcifying condition induced the activation of ERK1/2, which is not associated with an increase in DKK1 protein levels. Our data underscored a link between mineral disease and the alterations of sulfur amino acid metabolisms at a cell and molecular level. These results set the basis for the understanding of the link between uremic toxins and mineral-bone disorder during CKD progression.

16.
Pediatr Nephrol ; 37(5): 973-982, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34050397

RESUMO

The proximal tubule (PT) reabsorbs most of the glomerular filtrate and plays an important role in the uptake, metabolism and excretion of xenobiotics. Some therapeutic drugs are harmful to the PT, and resulting nephrotoxicity is thought to be responsible for approximately 1 in 6 of cases of children hospitalized with acute kidney injury (AKI). Clinically, PT dysfunction leads to urinary wasting of important solutes normally reabsorbed by this nephron segment, leading to systemic complications such as bone demineralization and a clinical scenario known as the renal Fanconi syndrome (RFS). While PT defects can be diagnosed using a combination of blood and urine markers, including urinary excretion of low molecular weight proteins (LMWP), standardized definitions of what constitutes clinically significant toxicity are lacking, and identifying which patients will go on to develop progressive loss of kidney function remains a major challenge. In addition, much of our understanding of cellular mechanisms of drug toxicity is still limited, partly due to the constraints of available cell and animal models. However, advances in new and more sophisticated in vitro models of the PT, along with the application of high-content analytical methods that can provide readouts more relevant to the clinical manifestations of nephrotoxicity, are beginning to extend our knowledge. Such technical progress should help in discovering new biomarkers that can better detect nephrotoxicity earlier and predict its long-term consequences, and herald a new era of more personalized medicine.


Assuntos
Injúria Renal Aguda , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Síndrome de Fanconi , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/metabolismo , Animais , Síndrome de Fanconi/induzido quimicamente , Feminino , Humanos , Glomérulos Renais , Túbulos Renais Proximais/metabolismo , Masculino
17.
Nephrol Dial Transplant ; 37(Suppl 2): ii46-ii55, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34792176

RESUMO

Kidney function has two important elements: glomerular filtration and tubular function (secretion and reabsorption). A persistent decrease in glomerular filtration rate (GFR), with or without proteinuria, is diagnostic of chronic kidney disease (CKD). While glomerular injury or disease is a major cause of CKD and usually associated with proteinuria, predominant tubular injury, with or without tubulointerstitial disease, is typically non-proteinuric. CKD has been linked with cognitive impairment, but it is unclear how much this depends on a decreased GFR, altered tubular function or the presence of proteinuria. Since CKD is often accompanied by tubular and interstitial dysfunction, we explore here for the first time the potential role of the tubular and tubulointerstitial compartments in cognitive dysfunction. To help address this issue we selected a group of primary tubular diseases with preserved GFR in which to review the evidence for any association with brain dysfunction. Cognition, mood, neurosensory and motor disturbances are not well characterized in tubular diseases, possibly because they are subclinical and less prominent than other clinical manifestations. The available literature suggests that brain dysfunction in tubular and tubulointerstitial diseases is usually mild and is more often seen in disorders of water handling. Brain dysfunction may occur when severe electrolyte and water disorders in young children persist over a long period of time before the diagnosis is made. We have chosen Bartter and Gitelman syndromes and nephrogenic diabetes insipidus as examples to highlight this topic. We discuss current published findings, some unanswered questions and propose topics for future research.


Assuntos
Nefropatias , Nefrite Intersticial , Insuficiência Renal Crônica , Encéfalo , Criança , Pré-Escolar , Taxa de Filtração Glomerular , Humanos , Nefropatias/diagnóstico , Nefrite Intersticial/complicações , Proteinúria/etiologia , Insuficiência Renal Crônica/complicações
18.
Physiol Rep ; 9(21): e15111, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762363

RESUMO

Acquired forms of nephrogenic diabetes insipidus (NDI) include lithium (Li)-induced and hypokalemia-induced NDI. Both forms are associated with AQP2 downregulation and collecting duct (CD) cellular remodeling. Statins are cholesterol-lowering drugs appearing to increase AQP2 membrane-translocation and improve urine concentration in other NDI models. We have investigated if statins are able to prevent or rescue the Li-induced changes in mice and in a mouse cortical CD cell line (mCCDc1l ). Biotinylation assays showed that acute (1hr) atorvastatin, simvastatin, or fluvastatin increased AQP2 membrane accumulation in mCCDc1l cells showing that the cell line responds to acute statin treatment. To see whether chronic statin treatment abolish the Li effects, mCCDc1l cells were treated with 48 h Li, combined Li/atorvastatin or combined Li/simvastatin. Li reduced AQP2, but combined Li/atorvastatin or Li/simvastatin did not prevent AQP2 downregulation. In mice, chronic (21 days) Li increased urine output and reduced urine osmolality, but combined Li/atorvastatin did not prevent these effects. In inner medulla (IM), Li reduced total AQP2 and increased pS261-AQP2. Combined Li/atorvastatin did not abolish these changes. Atorvastatin did not prevent a Li-induced increase in intercalated cells and proliferation in IM. In mice with already established NDI, atorvastatin had no effect on the Li-induced changes either. Mice subjected to 14 days of potassium-deficient diet developed polyuria and AQP2 downregulation in IM. Co-treatment with atorvastatin did not prevent this. In conclusion, atorvastatin does not appear to be able to prevent or rescue Li-NDI or to prevent hypokalemic-induced NDI.


Assuntos
Atorvastatina/uso terapêutico , Diabetes Insípido/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Animais , Aquaporina 2/metabolismo , Linhagem Celular , Diabetes Insípido/etiologia , Diabetes Insípido/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Hipopotassemia/complicações , Lítio/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Mol Genet Metab Rep ; 29: 100813, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712576

RESUMO

Glycogen Storage Disease type 1b (GSDIb) is a genetic disorder with long term severe complications. Accumulation of the glucose analog 1,5-anhydroglucitol-6-phosphate (1,5AG6P) in neutrophils inhibits the phosphorylation of glucose in these cells, causing neutropenia and neutrophil dysfunctions. This condition leads to serious infections and inflammatory bowel disease (IBD) in GSDIb patients. We show here that dapagliflozin, an inhibitor of the renal sodium-glucose co-transporter-2 (SGLT2), improves neutrophil function in an inducible mouse model of GSDIb by reducing 1,5AG6P accumulation in myeloid cells.

20.
Nephrol Dial Transplant ; 37(Suppl 2): ii4-ii12, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34718761

RESUMO

Metabolic acidosis, defined as a plasma or serum bicarbonate concentration <22 mmol/L, is a frequent consequence of chronic kidney disease (CKD) and occurs in ~10-30% of patients with advanced stages of CKD. Likewise, in patients with a kidney transplant, prevalence rates of metabolic acidosis range from 20% to 50%. CKD has recently been associated with cognitive dysfunction, including mild cognitive impairment with memory and attention deficits, reduced executive functions and morphological damage detectable with imaging. Also, impaired motor functions and loss of muscle strength are often found in patients with advanced CKD, which in part may be attributed to altered central nervous system (CNS) functions. While the exact mechanisms of how CKD may cause cognitive dysfunction and reduced motor functions are still debated, recent data point towards the possibility that acidosis is one modifiable contributor to cognitive dysfunction. This review summarizes recent evidence for an association between acidosis and cognitive dysfunction in patients with CKD and discusses potential mechanisms by which acidosis may impact CNS functions. The review also identifies important open questions to be answered to improve prevention and therapy of cognitive dysfunction in the setting of metabolic acidosis in patients with CKD.


Assuntos
Acidose , Disfunção Cognitiva , Transtornos Motores , Insuficiência Renal Crônica , Acidose/etiologia , Bicarbonatos , Disfunção Cognitiva/etiologia , Humanos , Transtornos Motores/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...